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SHAPE OF AN INCOMPRESSIBLE, WEAKLY CONDUCTING 

STRONG ELECTRIC FIELD 

A. A. Shutov 

JET IN A 

UDC 532.5.522 

The question of jet formation in an electric field has mainly been investigated experi- 
mentally. The generation of jets of various fluids in an electrostatic field was systemati- 
cally studied by Zeleny [i], who found a number of empirical conditions for the interelec- 
trode voltage and the fluid head governing the transition from droplets to a continuous jet 
flow. In [2] the effect of the field strength and the flow rate on the length of the con- 
tinuous part of the jet and in [3] the effect of conductivity on the breakup length were in- 
vestigated for fluids with a broad range of viscosities, conductivities and surface tensions 
(water-glycerol mixtures, salt solutions, organic and inorganic oils, etc.). Many studies 
have been devoted to the atomization of charged jet flows. For example, in [4] jets of in- 
sulating cryogenic liquids were examined in connection with the possibility of obtaining 
spherical microtargets of controllable size for laser thermonuclear synthesis. In [5, 6] 
electrostatic microfiber spinning from polymer solutions and melts was studied experimen- 
tally. 

It is assumed that the fluids being investigated possess ionic conductivity with a char- 
acteristic electric time parameter less than the characteristic capillary outflow time. Be- 
cause of the small relaxation time in the immediate vicinity of the fluid-emitting electrode 
the charge flows away towards the surface of the jet. The electric forces are determined by 
the interaction of the external field and the injected surface charges, the mutual repulsion 
of the latter, and the polarization interactions. For a thin, weakly decaying jet profile 
the polarization forces are small, there are no electric body forces, and the electric and 
hydrodynamic fields interact across the jet boundary. Strong electrostatic fields are con- 
sidered. For these fields the field strength associated with charge transfer UI exceeds the 
initial power of the Lydrodynamic flow pQs/2~2r~, i.e., the parameter 6 = pQ~/2~IUr~ ~ 1 (I 
is the current transported by the jet, U is the potential difference on the coordinate inter- 
val investigated, p and Q are the density and volume flow rate of the fluid, and r 0 is the 
initial radius of the jet). This makes it possible to omit the initial conditions of jet 
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generation at the fluid-injecting electrode. In [7] the role of surface tension, the mutual 
repulsion of the surface charges, and the interaction of polarization charges were analyzed. 
These forces make a small contribution to the velocity and the dependence of the radius on 
the longitudinal coordinate. We shall not be concerned with them here. 

i. Formulation of the Problem. We will consider the linear motion of a net in the 
cylindrical coordinate system r, z. The z axis coincides with the axis of symmetry of the 
circular jet, and the plane z = 0 passes through the end section of the capillary. The 
solution of the hydrodynamic equations for the velocity V and the pressure p is found in the 
form: 

V ~ = ~ a ~ ( z ) r  ~, p=~.~p . ( z ) r " ,  ( 1 . l )  
0 0 

where the coefficients a n and Pn are functions only of z. The quantities with the dimension 
of length are normalized on r0, and Q/~r~ and pQ2/~2r~ are taken as the velocity and pres- 
sure scales, respectively. Using the relation between V r and V z obtained from the continuity 
equation, for the radial velocity we obtain 

rn+l 

0 

(the prime denotes differentiation with respect to z). Substituting the velocities and pres- 
sure in the steady-state Navier-Stokes equations, we find that there are no odd powers in 
expansions (I.i). In what follows in series (i.i) we shall consider terms only up to the 
fourth order in r: 

( i  2 , 1 , ~\ V z = a  o + a 2 r  2-4-a4r 4, V r = - - r  ao-b t__,%2.4_ya4r ), 
4 ~ "  ( 1 . 2 )  

P = Po + P~ r2 + p~rL 

Equating terms with like powers of r in the Navier-Stokes equations, we obtain 

, , I / ,, 
r~ aoao = - -  Po + ~ ~ ao + 4a2); ( 1 . 3 )  

r,: t '2 i . t ( , i "1 --(ao - - ~ a o a o = - - 2 p  2 - ~  2a~ +--5 a~ ; ( 1 ,4 )  
\ / 

, , ~ ,, ( 1  5) r~: aoa2 = - -  P2 + ~-~ (a2 + t6a4). 

Here, Re = pQ/~r0~ ; ~ is the viscosity of the fluid. In accordance with the chosen velocity 
expansion for the stream function we have ~ ---- Een(z)r~+~/(n n u 2). Confining our attention to 
terms of up to fourth order in r, from the condition of constancy of ~ on the surface of the 
jet we find the relation 

~0/~ = C - -  (~/2)ad',  ( : . 6 )  

w h e r e  r = f ( z )  i s  t h e  s h a p e  o f  t h e  j e t  i n  c y l i n d r i c a l  c o o r d i n a t e s ,  and  t h e  c o n s t a n t  C = 1 i s  
d e t e r m i n e d  f r o m  t h e  c o n d i t i o n  o f  c o n s e r v a t i o n  o f  t h e  f l o w  r a t e .  F o r  t h e  b o u n d a r y  s t r e a m l i n e  
f r o m  ( 1 . 6 )  we h a v e  

Vz/2(z) = i ~- (l/2)a2/4(z). ( 1 . 7 )  

The infinite system of differential equations, of which relations (1.3)-(1.51) form an 
initial fragment, is such that in any number of equations taken in succession in order of 
increasing powers of r the number of unknowns will exceed by two the number of equations. 
By adding to (1.3)-(1.5) the conditions for the normal and tangential tensions on the bound- 
ary streamline and Eq. (1.6) we obtain a system closed with respect to the number of vari- 
ables. 

2. Jet in a Uniform Electric Field. The charge is injected into the jet at the fluid- 
emitting electrode. As a result of the short relaxation time ~ = ee0/l (~ is the dielectric 
constant, and X the conductivity) charge transfer takes place along the boundary streamline. 
Neglecting the ohmic current, for the electric surface current we write 

At~O 

Here we have taken into account only the contribution of convective charge transfer, V z = 

Vz/l + f,2 is the velocity of the boundary streamline, and As is the arc length of the lateral 
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(s = pQS/2~IEr~). 
we obtain 

surface between nearby cross sections of the jet. Omitting the terms containing f,2 and f4, 
whose contribution to the solution is estimated below, and using (1.7), for the surface 
charge density we have 

= I](z)/2Q. ( 2 . 1 )  

Provided that the distortions of the external uniform field of strength E are small, 
the tangential component of the electric tension tensor is equal to T~ = oE [8]. The non- 
dimensionalized equation of the tangential tensions on the jet boundary can be written in the 
form: 

t - ~ " 2  I Re  (2.2) 
2 a 2 - - - f a ~  = 4 s 

The normal electric forces are small, so that for the normal tensions 

v 

In the six relations (1.3)-(1.6), (2.2), (2.3) there are six variables a 0, a 2, a 4, P0, 
P4, and f subject to determination. The solution is found in the domain in which for the un- 
known dependence of the jet radius f(z) we have f'(z) ~ I. Assuming that a2n>>a~n+2 and 
a2(z ) --const+o(z) , i.e., that the expansion of a 2 begins with a constant, we can drop the term 
a~f 2 from (2.2). Integrating (1.3) using (2.2), we find 

l - 2 . ;  
= - - P 0  + ~ z  + ~ - +  coast. ( 2 .4 )  

The second term in the pressure is obtained from (1.4) and (2.2) 
tfr 

P~=-- ao - - T  aoao 2 Re" 

S u b s t i t u t i n g  ( 2 . 1 ) ,  ( 2 . 3 ) ,  and ( 2 . 5 )  in ( 2 . 4 )  g i v e s  the  f o l l o w i n g  equa t i on  f o r  a0: 
V r  2 

a~ z 3% [ i ,~ t "~]2 a0 ] 
= -~ +const  + ~-$ - -  ( ~  a o - -  ~ aoao) 8 Re" 

Making use of the smallness of a~ as compared with a 0, we write 

ao = ]/'z/s + coast. ( 2 . 6 )  

In form this expression is identical to the formula for the velocity of a jet in a uniform 
gravity field, but here the role of the acceleration of gravity is played by the quantity IE/ 
pQ. The corrections to the velocities and pressures, which are of high order in z, can be 
calculated using (2.6). 

Considering that on the interval of z in question a~>>a~ , from (1.6) we derive the 

dependence: 

1 t a~ 
f i ( Z ) = a  o 2 a~" 

The c o n s t a n t  in ( 2 . 6 )  can be found from matching the  s o l u t i o n  ob t a ined  and the  s o l u t i o n  
at the capillary. However, in the strong field approximation it can be omitted. The shape 
and the coefficients of the expansion of the velocities in dimensional form can be determined 

from the expressions 

I(z) = (9Qa/2~21Ez) x/a, ao = ] / r ~ p Q ,  a~ = IE /49Q,  (2 .7 )  

and the pressure is found from (2.3), (2.5). As was to be expected, the shape and velocity 
in the force field do not contain the dependence on the initial velocity and radius of the 

jet. 

Using (2.7), we will estimate the terms omitted in the various stages of the calcula- 
tions. In obtaining (2.1) we neglected the terms f,2 and (i/2)a2f 4 in expression (1.7), 
which are equal to f2/16z2 and Rer0/16z, respectively. The ratios of the terms in the veloc- 

3 ~ re ]2 4951 a'" -2. -- Ner0 Choosing the greatest, we obtain 
ity V z have the values: aj4/ao =-~B~e-~-+l--O~-~,a21/ao 8 z 

the conditions for the region of existence of the solution found: 
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(Re/8)(ro/Z)<< i; ( 2 . 8  ) 

/Iz << i .  ( 2 . 9 )  

The first limitation is imposed on the viscosity of the fluid, the second on the field. 

The viscous velocity field is important in this problem as the medium converting the 
surface electric forces into volume kinetic energy. Despite the fact that the solution ob- 
tained does not existwhen ~ = 0, there is an interval of z detirmined by the condition (2.8) 
on which the viscosity corrections to the velocity and the shape can be neglected. In this 
case the energy of the electric field is converted into kinetic energy almost without dissi- 
pation in the viscous tension field. 

The shape of the jet in a uniform electric field was investigated experimentally in 
accordance with the scheme described in [7]. The gap between the electrodes of the plane- 
parallel capacitor was 40 ~, the radius of the capillary r 0 = 0.44 mm. In Fig. 1 we have 
plotted the experimental points for the dependence of the radius of the jet on z. The fol- 
lowing notations has been used for the fluids: circle) glycerol (GL), 9 = 1.26 g/cm ~, p = 
13 p; square) cyclohexanol (CHL), p = 0.96, U = 0.55; triangle) dimethylphthalate (DMP), 
p = 1.19, D = 0.16; diamond-dibutylphthalate (DBP), p = 1.04, ~ = 0.21. The straight lines 
correspond to (2.7): 1-4) s = 0.4, 0.27, 0. 135, 0.062. The jets had the parameters: line 
I) DBP, Q = 6.[0 -2 cm~/sec, E = 7.5.105 V/m, I = 0.335"10 -7 A; DMP, Q = 10.8.10 -2 , E = 7.5. 
105 , I = 2 32"10-7; 2) DMP, Q = 5.55"10 -2 , E = 7.5"10 ~ I = 1.57"10-7; CHL, Q = 4.93-'~0! "2 
E = 5.75"i0 s, I = 1.12.10-7; 3) CHL, Q = 2.5.10 -2 , E = 9.5"i0 s, I = 1.42"10-7; GL, Q = 1.62" 
10 -2 , E = 5 88"105 I = 0.865"10-7; 4) CHL, Q = 6.4.10 -a , E = 7.5"i0 s , I = 0.69"10-7; GL, 
Q = 5.88"10 -~, E = 7 43"I0 S I = 0.69-10 -7 

In the experiments Re/8 Varied from 5-10 -4 to 0.7. In the inequality z ~ s4/Sr0, equiv- 
alent to condition (2.9), the parameter s 4/5 did not exceed 0.5. Hence, in accordance with 
(2.8), (2.9), when z ~ 0.7r 0 in these experiments we must expect the shape of the jet to 
approach (2.7). In reality this takes place when z ~ (20-30)r 0 because of the fact that there 
is a fairly extensive zone near the capillary in which the jet drawing mechanism differs from 
that considered. It is also clear that dependence (2.7) is approached more rapidly by jets 
with smaller Re, in accordance with (2.8). 

3. Jet in a Nonuniform Electric Field. Condition (2.8), satisfaction of which means 
that the viscosity does not contribute to the dominant terms of the velQcities and the de- 
pendence of the jet radius on the longitudinal coordinate, makes it possible to integrate the 
equations of motion in an arbitrary electrostatic field. Assuming, as before, that the ac- 
celeration of the jet is determined by the interaction of the electric field and the surface 
charge tangential to the jet boundary, we write the equations of the quasi-one-dimensional 
approximation in the form [7]: 

~QV~ - -  IF, = OgS; ( 3 . 1  ) 
vz 

G s  - Q; (3.2) 

Vr ~ r dVz 
a & "  ( 3 . 3 )  

Here�9 the longitudinal velocity V z is a function only of z; S is the area of the jet cross 
section. The relation (3.2) is the continuity equation averaged over the cross section of 
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the jet, and Eq. (3.3) serves for determining the radial velocity. Integrating (3.1)-(3.3) 
and using the relation E = -VU, we obtain pQ(V~(~--V~(z0))/2=!(U(z0)--U(z))+g(z--z0)pQ (z 0 
is the potential reference point). The individual terms of the relation obtained are the 
strengths of the hydrodynamic flow, the electric field, and the gravity field. For the po- 
tential we have 

U (~ = U (z0) + PQ~ I + -- z0)" (3.4) 
2s21r4 (z0) r4 (z) / 

In acco rdance  wi th  ( 3 . 4 ) ,  we e x p e r i m e n t a l l y  de t e rmined  t he  p o t e n t i a l  d i s t r i b u t i o n  on 
the axis of a plane-hyperboloid of revolution electrode system using glycerol jets. The 
glycerol was injected through an opening in the center of the horizontal flat upper metal 
electrode mounted at a distance b = 91 mm from the vertex of a hyperboloid with focal length 
c = 91.425 mm. The equation of the hyperboloid was z2/b 2 = I + r2/(c 2 - b2), the z coordi- 
nate was reckoned from the plane electrode, and z 0 = 0. To the upper electrode we supplied 
a voltage U 0 = 30 kV, and the hyperboloid was grounded. The theoretical potential distri- 
bution~on the axis of this electrode system is given by the equation [9] 

U(z) Uo_Uoln~_f/inC+ b = ~_~ .  (3.5) 

In Fig. 2 we have plotted the experimental data for the dependence of AU = UCz 0) - U(z) 
on the z coordinate in accordance with (3.4) and the theoretical curve corresponding to (3.5). 
In this figure the circles correspond to a jet with Q = 1.89.10 -2 cm2/sec, I = 0.58"10 -7 A, 
and the squares to a jet with Q = 2.2"10 -2 , I = 0.63-10 -7 . 

The analogous dependence for a uniform field with an eight-centimeter interelectrode 
gap is shown in Fig. 3: for glycerol jets with s = 0.186 (circles), 0.181 (squares), and 
0.196 (triangles). 

For the jets represented in Figs. i-3 the electric accelerations IE/pQ varied from 30g 
for DBP to 900g for GL and CHL (g is the acceleration of gravity). 

The author is grateful to N. N. Suprun for assisting with the experiments. 
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